Math 601 Midterm 1 Sample

Name: _____

This exam has 9 questions, for a total of 100 points.

Please answer each question in the space provided. You need to write **full solutions**. Answers without justification will not be graded. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score	
1	18		
2	10		
3	15		
4	10		
5	10		
6	6		
7	10		
8	5		
9	16		
Total:	100		

Question 1. (18 pts)

Determine whether each of the following statements is true or false. You do NOT need to explain.

- (a) Let V be a linear subspace of \mathbb{R}^n . We have vectors v_1, \dots, v_k and w_1, \dots, w_ℓ in V. Suppose v_1, \dots, v_k are linearly independent, and w_1, \dots, w_ℓ span V. Then $k \leq \ell$.
- (b) Let U and W be subspaces of the vector space V. If $U \subseteq W$, then U + W = W.
- (c) An $(n \times n)$ matrix is invertible if and only if it is row equivalent to the $(n \times n)$ identity matrix I_n .
- (d) Suppose A is an $(n \times m)$ matrix, then dim $\text{Im}(A) \leq n$ and dim $\text{ker}(A) \leq m$.
- (e) Let A, B, C be three $(n \times n)$ square matrices. If AB = AC, then B = C.
- (f) The linear system

x	+	10y	—	3z	=	3
3x	+	4y	+	9z	=	1
2x	+	5y	_	2z	=	8

has exactly two solutions.

Sol	lution:
501	uuuuu.

- (a) True
- (b) True
- (c) True
- (d) True
- (e) False
- (f) False (a linear system can never have precisely two solutions.)

Question 2. (10 pts)

A line L in \mathbb{R}^3 passes through the point (0, 1, 0). Suppose L is parallel to the plane x + y + z = 0 and is orthogonal to the line

$$x = 2t, y = t + 1, z = -t.$$

Find parametric equations of the line L.

Solution: The direction vector of L is orthogonal to both the normal vector u = (1, 1, 1) of the plane and the direction vector v = (2, 1, -1) of the other line. Calculate the cross product of u and v:

$$u \times v = (-2, -3, -1)$$

So we have the following parametric equations of L:

$$\begin{cases} x = -2t \\ y = 3t + 1 \\ z = -t \end{cases}$$

Question 3. (15 pts)

Given

$$A = \begin{bmatrix} 2 & 2 & -3 & 1 & 13\\ 1 & 1 & 1 & 1 & -1\\ 3 & 3 & -5 & 0 & 14\\ 6 & 6 & -2 & 4 & 16 \end{bmatrix}$$

(a) Find a basis of Ker(A).

Solution: First, use elementary row operations to get the reduced row echelon form of A.

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

So all elements in KerA are of the form

$$t \begin{bmatrix} -1\\1\\0\\0\\0 \end{bmatrix} + s \begin{bmatrix} 2\\0\\4\\-5\\1 \end{bmatrix}$$

 So

$$v_1 = \begin{bmatrix} -1\\1\\0\\0\\0 \end{bmatrix}, v_2 = \begin{bmatrix} 2\\0\\4\\-5\\1 \end{bmatrix}$$

form a basis of the kernel.

(b) Find a basis of the row space of A.

Solution: The three nonzero rows in the reduced row echelon form of A form a basis of the row space of A. That is

$$u_1 = (1, 1, 1, 1, -1)$$
$$u_2 = (0, 0, -5, -1, 15)$$
$$u_3 = (0, 0, 0, 1, 5)$$

form a basis of the row space of A.

(c) Find a basis of Im(A).

Solution: Use $\operatorname{rref}(A)$ from the part (a), we see that the 1st, 3rd and 4th columns of A form a basis of $\operatorname{Im}(A)$. That is,

$$w_1 = \begin{bmatrix} 2\\1\\3\\6 \end{bmatrix}, w_2 = \begin{bmatrix} -3\\1\\-5\\-2 \end{bmatrix}, w_3 = \begin{bmatrix} 1\\1\\0\\4 \end{bmatrix}$$

form a basis of Im(A).

Question 4. (10 pts)

Let $M_2(\mathbb{R})$ be the space of all (2×2) matrices with real coefficients. The set

$$S = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

is a basis of $M_2(\mathbb{R})$. Find the coordinates of $A = \begin{pmatrix} 5 & 3 \\ 3 & 1 \end{pmatrix}$ with respect to the basis S.

Solution: We need to write

$$\begin{pmatrix} 5 & 3 \\ 3 & 1 \end{pmatrix} = a_1 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + a_2 \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} + a_3 \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} + a_4 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} .$$

That is, we need to solve the linear system

$$\begin{cases} a_1 + a_2 + a_3 + a_4 = 5\\ a_1 - a_2 - a_3 = 3\\ a_1 + a_2 = 3\\ a_1 = 1 \end{cases}$$

Simply use back substitution. We have

$$a_1 = 1, a_2 = 2, a_3 = -4, a_4 = 6$$

 So

$$[A]_S = \begin{bmatrix} 1\\ 2\\ -4\\ 6 \end{bmatrix}$$

Question 5. (10 pts)

Determine whether
$$x = \begin{bmatrix} 4\\5\\6\\-1 \end{bmatrix}$$
 lies in the linear span of the vectors
 $v_1 = \begin{bmatrix} 1\\3\\2\\5 \end{bmatrix}, v_2 = \begin{bmatrix} 0\\4\\-1\\2 \end{bmatrix}$ and $v_3 = \begin{bmatrix} 1\\-2\\1\\3 \end{bmatrix}.$

Solution: Write down the matrix

by applying elementary row operations, we get

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & 7/3 \\ 0 & 1 & 0 & 1/3 \\ 0 & 0 & 1 & 5/3 \\ 0 & 0 & 0 & 55/12 \end{array}\right]$$

This is inconsistent. So no solution. In other words, x is not in the linear span of v_1, v_2 and v_3 .

Question 6. (6 pts)

Let V be a vector space. Suppose $F: V \to V$ is a linear transformation. Show that the kernel of F is a subspace of V.

Solution:

(1) 0 ∈ ker F, since F(0) = 0.
(2) If v, w ∈ ker F, then
F(v + w) = F(v) + F(w) = 0 + 0 = 0.
So v + w ∈ ker F.

(3) If w ∈ ker F and k ∈ ℝ, then
F(kw) = kF(w) = k ⋅ 0 = 0.
So kw ∈ ker F.
Therefore ker F is a subspace of V.

Question 7. (10 pts)

Show that (t-1), (t+1) and $(t-1)^2$ form a basis of $\mathbb{P}_2(t)$, where $\mathbb{P}_2(t)$ is the space of all polynomials of degree ≤ 2 .

Solution: There are various ways to solve this problem.

- (1) First method: prove that (t-1), (t+1) and $(t-1)^2$ are linearly independent and span $\mathbb{P}_2(t)$.
- (2) Second method: prove that (t-1), (t+1) and $(t-1)^2$ are linearly independent and use the fact dim $\mathbb{P}_2(t) = 3$.
- (3) third method: prove that (t-1), (t+1) and $(t-1)^2$ span $\mathbb{P}_2(t)$ and use the fact $\dim \mathbb{P}_2(t) = 3$.

Let us the second method. Consider a linear combination of (t-1), (t+1) and $(t-1)^2$ such that

$$a_1(t-1) + a_2(t+1) + a_3(t-1)^2 = 0.$$

Then we want to show that $a_1 = a_2 = a_3 = 0$ is the unique solution. This would imply that (t-1), (t+1) and $(t-1)^2$ are linearly independent.

Regroup the coefficients, and we have the following linear system:

$$\begin{cases}
-a_1 + a_2 + a_3 = 0 \\
a_1 + a_2 - 2a_3 = 0 \\
a_3 = 0
\end{cases}$$

Solve this and indeed we have the unique solution $a_1 = a_2 = a_3 = 0$. So (t - 1), (t + 1) and $(t - 1)^2$ are linearly independent.

Now we know that dim $\mathbb{P}_2(t) = 3$. Then any 3 linearly independent vectors of $\mathbb{P}_2(t)$ form a basis. Therefore (t-1), (t+1) and $(t-1)^2$ form a basis.

Question 8. (5 pts)

Suppose A and B are invertible $(n \times n)$ matrices. Then we know that AB is also invertible. Use this fact and the definition of the inverse of an invertible matrix to show that

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Solution: Notice that

$$B^{-1}A^{-1}(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = I$$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = A^{-1}IA = I$$
So by definition the inverse of AB, which is denoted by $(AB)^{-1}$, is $B^{-1}A^{-1}$. That is,
 $(AB)^{-1} = B^{-1}A^{-1}$.

Question 9. (16 pts)

Recall that two vectors $v, w \in \mathbb{R}^n$ are said to be orthogonal if their dot product is zero, that is, $v \cdot w = 0$.

(a) Let $u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $u_2 = \begin{bmatrix} +1 \\ 0 \\ -1 \end{bmatrix}$ and $u_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ in \mathbb{R}^3 . Determine whether u_1 , u_2 and u_3 are mutually orthogonal.

Solution: A straightforward calculation shows that u_1 , u_2 and u_3 are mutually orthogonal.

(b) Suppose v and w are both nonzero vectors in \mathbb{R}^n . Show that if $v \cdot w = 0$, then v and w are linearly independent. (Hint: For any linear combination of v and w, take the dot product of this linear combination with v (respectively w). What do you see?)

Solution: Suppose we have a linear combination

 $a_1v + a_2w = 0.$

Then we need to show that $a_1 = a_2 = 0$. Indeed, consider the dot product

$$0 = (a_1v + a_2w) \cdot v = a_1 ||v||^2 + 0 = a_1 ||v||^2$$

But $||v|| \neq 0$. Therefore $a_1 = 0$. Similarly,

$$0 = (a_1v + a_2w) \cdot w = 0 + a_2 ||w||^2 + 0 = a_2 ||w||^2$$

shows that $a_2 = 0$. So v and w are linearly independent. (c) Now suppose nonzero vectors v_1, v_2 and v_3 are mutually orthogonal in \mathbb{R}^n . Show that the set $\{v_1, v_2, v_3\}$ is linearly independent. (Hint: the same idea from part (b) applies.)

Solution: Suppose we have a linear combination

$$a_1v_1 + a_2v_2 + a_3v_3 = 0.$$

Then we need to show that $a_1 = a_2 == a_3 = 0$. Consider the dot product

$$0 = (a_1v_1 + a_2v_2 + a_3v_3) \cdot v_1 = a_1 ||v_1||^2$$

But $||v_1|| \neq 0$. Therefore $a_2 = 0$. Similarly, by taking the dot product of $a_1v_1 + a_2v_2 + a_3v_3$ with v_2 and v_3 respectively, we have $a_2 = a_3 = 0$. Therefore, the set $\{v_1, v_2, v_3\}$ is linearly independent.

(d) Use either the previous parts or your other favorite method to determine whether $\begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$

 $u_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, u_2 = \begin{bmatrix} +1\\0\\-1 \end{bmatrix}$ and $u_3 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ form a basis of \mathbb{R}^3 .

Solution: From part (a), we know that u_1u_2 and u_3 are mutually orthogonal and are nonzero vectors.

By part (c), we know u_1, u_2 and u_3 are linearly independent.

Since dim $\mathbb{R}^3 = 3$, we see that u_1, u_2 and u_3 form a basis of \mathbb{R}^3 .